
International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. IV, April ISSN: 2231-5152

82

International Journal of Advances in Engineering Research

ROLE OF VIRTUALIZATION IN EMBEDDED

SYSTEM1

Sreenivasan R

Lecturer in Electronics Engineering, Government Polytechnic College, Palakkad.

ABSTRACT

System virtualization, which is very popular in the business and personal, computing worlds, is recently

getting a lot of attention in the embedded world. We will examine the differences in motivation for the use

of system virtual machines, as well as the resulting differences in the requirements for the technology,

beginning with a comparison of key characteristics of enterprise systems and embedded systems. We

observe that these distinctions are very significant, and that virtualization can't meet the extraordinary

prerequisites of inserted frameworks. Instead, virtualization as a special case necessitates more general

operating system technologies. We argue that high-performance micro kernels, specifically L4, are a

suitable technology for the needs of embedded systems of the next generation.

Keywords: System, virtualization, embedded, virtual machines, micro kernels.

INTRODUCTION

Virtualization has been a hot topic in the enterprise space for quite some time, but has recently

become an important technology for embedded systems as well. It is therefore important for

embedded-systems developers to understand the power and limitations of virtualization in this

space, in order to understand what technology is suitable for their products.

This white paper presents an introduction to virtualization technology in general, and specifically

discusses its application to embedded systems. We explain the inherent differences between the

enterprise-systems style of virtualization and virtualization as it applies to embedded systems. We

explain the benefits of virtualization, especially with regard to supporting embedded systems

composed of subsystems with widely varying properties and requirements, and with regard to

security and IP protection.

1 How to cite the article:

Sreenivasan R., Role of Virtualization in Embedded System, International Journal of Advances in Engineering Research, April 2013, Vol 3,
Issue 4, 82-93

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. IV, April ISSN: 2231-5152

83

International Journal of Advances in Engineering Research

We then discuss the limitations of plain virtualization approaches, specifically as it applies to

embedded systems. These relate to the highly-integrated nature of embedded systems, and the

particular security and reliability requirements.

We present microkernels as a specific approach to virtualization, and explain why this approach is

particularly suitable for embedded systems. We show how microkernels, especially Open Kernel’s

OKL4 technology, overcome the limitations of plain virtualization.

System virtualization has become a common computing tool, as evidenced by billion-dollar initial

public offerings (IPOs) and startup company sales for hundreds of millions of dollars. The

decoupling of virtual and actual registering stages by means of framework virtual machines (VMs)

upholds different purposes, of which the most famous ones are:

• Consolidating services that were making use of distinct computers into distinct virtual machines

that were running on the same computer. To achieve quality-of-service (QoS) isolation between

servers, this makes use of the strong resource isolation offered by virtual machines;

• load-balancing across clusters by migrating live virtual machines or creating new virtual

machines on demand on a host that is rarely used. This makes use of virtualization's platform

abstraction;

• power management in clusters by moving virtual machines off of machines that are underutilized

and allowing them to be shut down (in effect, load-balancing in reverse)

• firewalling administrations which have a high gamble of being compromised to safeguard the

remainder of the framework. Isolation of resources is also used in this;

• running multiple operating systems (OSs) on the same physical machine, such as Windows,

Linux, and MacOS, typically to run OS-specific applications This use is also made possible by

resource isolation and is primarily applicable to personal computers (desktops or laptops).

The fact that all VMs typically run the same operating system (or, in the last scenario discussed

above, "similar" operating systems in the sense that they offer roughly the same kinds of

capabilities and similar abstraction levels) is one of the main characteristics of these usage cases.

Similarly to physical machines, VMs communicate via virtual network interfaces (including

network file systems) in these scenarios. This is in line with the VM view, which is, by definition,

similar to the physical machine view. Clearly, most of the above use cases do not exist in today's

embedded systems; however, some will become relevant as manycore chips become available. We

need to examine the characteristics of contemporary embedded systems and identify similarities

as well as distinctions between them and enterprise computing systems in order to comprehend

why system virtual machines have recently received a lot of interest from developers of embedded

systems.

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. IV, April ISSN: 2231-5152

84

International Journal of Advances in Engineering Research

For quite some time, virtualization has been a hot topic in the business world, but it has recently

emerged as an essential technology for embedded systems as well. Therefore, it is essential for

developers of embedded systems to comprehend the advantages and disadvantages of

virtualization in this field in order to determine which technology is best suited to their products.

This white paper gives an overview of virtualization technology in general and focuses on how it

can be used with embedded systems. We go over the fundamental differences between

virtualization for embedded systems and enterprise-systems virtualization. We discuss the

advantages of virtualization, particularly with regard to IP and security protection for embedded

systems made up of subsystems with widely varying requirements and properties. Following that,

we talk about the drawbacks of standard virtualization strategies, particularly in relation to

embedded systems. These are related to the particular security and reliability requirements and the

highly integrated nature of embedded systems. We discuss the advantages of microkernels as a

particular virtualization strategy for embedded systems and present microkernels as an example of

this strategy. We demonstrate how microkernels, particularly Open Kernel's OKL4 technology,

circumvent plain virtualization's limitations. Then, we give a glimpse of this technology's future.

VIRTUALIZATION

Providing a software environment in which programs, including operating systems, can run as if

they were on bare hardware is known as virtualization (Figure 1). Such a product climate is known

as a virtual machine (VM). A VM of this kind is a reliable, isolated copy of the real machine

[PG74].

The virtual-machine monitor (VMM) or hypervisor is the software layer that provides the VM

environment. The VMM possesses three essential characteristics [PG74] in order to maintain the

illusion that it contains:

1. Software is provided with an environment by the VMM that is nearly identical to the

original machine;

2. At best, the speed of programs running in this environment slows down slightly;

3. System resources are completely under the control of the VMM.

Virtualization is highly practical because of these three important characteristics. The first

(similitude) guarantees that product that sudden spikes in demand for the genuine machine will

run on the virtual machine as well as the other way around. The second, efficiency, ensures that

virtualization can be implemented in terms of performance. The third measure, resource control,

ensures that software cannot exit the virtual machine. Language environments, such as the Java

virtual machine, are also frequently referred to as virtual machines. A process virtual machine

(VM) is referred to as this, while a system virtual machine (VM) is referred to as this and can run

complete operating systems [SN05]. System VMs are the only topic of this paper.

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. IV, April ISSN: 2231-5152

85

International Journal of Advances in Engineering Research

HOW IS IT DONE?

The majority of instructions must be executed directly by the hardware in order to meet the

efficiency requirement: A single virtual machine instruction is substituted for multiple host

hardware instructions by any interpretation or emulation. This necessitates that the virtual

hardware and the physical hardware on which the VMM is hosted must largely be identical. It is

possible for the virtual and physical machines to have minor differences. For instance, the virtual

machine might have a few additional guidelines not upheld by the actual equipment. Compared to

the virtual hardware, the physical hardware may have different devices or a different memory

management unit. It's possible that the virtual machine will run older versions of the same

fundamental architecture. Alternately, the virtual machine might be a new architecture version that

hasn't been implemented yet. Virtualization can be about as effective as using the same hardware

as long as there aren't too many differences and the different instructions aren't used a lot. Some

instructions cannot be carried out immediately. All instructions that deal with resources must

access virtual resources rather than physical ones because of the resource-control characteristic.

As a result, the VMM must interpret these instructions in order to prevent virtualization from

failing. The virtual machine is specifically required to interpret two types of instructions: control-

delicate guidelines which adjust advantaged machine state, and in this manner impede the

hypervisor's command over assets; instructions that are behavior-sensitive and can access and read

privileged machine state. Although they are unable to alter resource allocations, they reveal the

state of actual resources—specifically how it differs from virtual resources—breaking the

virtualization illusion. Together, control-touchy and conduct delicate guidelines are called

virtualization-delicate, or just delicate directions. There are two fundamental ways to guarantee

that the virtual machine's code does not carry out any sensitive instructions: virtualization alone:

ensure that the hypervisor is invoked rather than sensitive instructions executed within the virtual

machine; unclean virtualization: Virtualization code should take the place of sensitive instructions

in the virtual machine.

PURE VIRTUALIZATION

The traditional method is pure virtualization. It requires privileged access to all sensitive

instructions. Favored directions execute effectively on the off chance that the processor is in a

special state (normally called special mode, bit mode or boss mode) however create an exemption

when executed in unprivileged mode (likewise called client mode), as displayed in Figure 2. The

hypervisor's exception handler is the address at which an exception enters privileged mode.

The only requirement for pure virtualization is to execute all of the VM's code in the processor's

non-privileged execution mode. The hypervisor will get a hold of any sensitive instructions in the

VM's code. In order to keep the state of the virtual machine intact, the hypervisor interprets the

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. IV, April ISSN: 2231-5152

86

International Journal of Advances in Engineering Research

instruction and "virtualizes" it. On nearly all current architectures, pure virtualization was

previously impossible due to the presence of sensitive, non-privileged instructions that would

access physical machine state rather than virtual machine state. Virtualization extensions, which

enable the processor to be configured in a way that forces all sensitive instructions to cause

exceptions, have recently been added by all major processor manufacturers. In any case, there are

different motivations behind why options in contrast to unadulterated virtualization are generally

utilized. One is the high cost of exceptions. A processing delay of one cycle per pipeline stage

occurs when an exception drains the pipeline on processors with pipelines. When switching back

to user mode, there is typically a similar delay. Additionally, exceptions and exception returns are

branches that are typically unpredictable by a processor's branch-prediction unit, which increases

latency. In high-performance processors with extensive pipelines, these effects typically add up to

more than 10 to 20 cycles. The exception costs of some processors, like the x86 family, are

significantly higher than this (many hundreds of cycles).

IMPURE VIRTUALIZATION

As depicted in Figure.3, impure virtualization necessitates the removal of non-privileged sensitive

instructions from the virtual machine's code. A method known as binary code rewriting can make

this clear: At the time of loading, the executable code is scanned, and any instructions that aren't

working are changed with ones that make an exception or provide virtualization in another way,

like keeping virtual hardware resources in user mode. Alternately, troublesome instructions could

be avoided entirely from the executable code. Pre-virtualization, also known as afterburning, is a

mostly automatic method that can be used to accomplish this at compile time [LUC+05].

Alternately, the source code can be manually altered to replace direct access to privileged state

with explicit hypervisor invocations (hypercalls) instead. Para-virtualization is the term used to

describe this strategy. The procedure remains unchanged from pure virtualization: The hypervisor

is invoked whenever a virtualization event occurs, and the guest code executes in the processor's

non-privileged execution mode. In addition to being able to deal with hardware that is not suitable

for pure virtualization, para-virtualization and pre-virtualization offer another advantage: By

replacing multiple sensitive instruction sequences with a single hypercall, they can reduce the

number of costly unprivileged mode switches. Impure virtualization is therefore appealing even

on fully virtualisable hardware because it has the potential to reduce virtualization overhead.

EMBEDDED SYSTEMS PROPERTIES

Historically, embedded systems were relatively straightforward, one-purpose devices. Hardware

limitations (memory, processing power, battery charge) dominated. Additionally, their

functionality was largely determined by hardware, with device drivers, a scheduler, and a little

control logic serving as software. As a result, they had software complexity ranging from low to

moderate. They were constrained by real-time constraints, which place unusual demands on

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. IV, April ISSN: 2231-5152

87

International Journal of Advances in Engineering Research

operating systems for general-purpose computing. Additionally, traditional embedded systems are

closed: Except for sporadic firmware upgrades, the entire software stack is loaded prior to sale and

provided by the device manufacturer. However, general-purpose systems are increasingly being

adopted by modern embedded systems. Their software's complexity and number of features are

also increasing. Smartphone software stacks currently range from 5 to 7 Mloc and growing.

Software occupies literally gigabytes in high-end automobiles, and it is said that loading the

software takes longer than building the vehicle itself. Applications originally designed for the PC

world are increasingly being run on embedded systems, such as the iPhone's Safari web browser,

and new applications, such as games, are increasingly being written by programmers who lack

experience with embedded systems. High-level application-oriented operating systems with

common APIs (Linux, Windows, and Mac OS) are in high demand as a result. In addition, there

is a significant movement toward openness [4, 17]. The owners of the devices want to install and

use their own applications on the systems. This requires open APIs (and presents all the security

challenges known from the PC world, including infections and worms). However, some of the

previous distinctions from general-purpose systems remain. Implanted gadgets are still constant

frameworks (or possibly some portion of the product is ongoing). Additionally, they frequently

remain resource constrained: As a result of the slow rate at which battery capacity expands over

time, mobile devices have limited energy budgets. Additionally, memory is frequently still a cost

factor (in addition to being a consumer of energy) given that many embedded systems are sold for

just a few dollars. At the same time, embedded systems, which are already present everywhere,

are becoming an increasingly integral part of daily life to the point where it is becoming difficult

to imagine living without them. They are increasingly being used in situations where a life or

mission is at stake. As a result, there are increasing demands placed on security, dependability,

and safety.

VIRTUALIZATION USE CASES

The ability to address some of the new challenges posed by them is what makes virtualization

useful in embedded systems. One is addressing the conflicting requirements of highlevel APIs for

application programming, real-time performance, and legacy support by providing support for

heterogeneous operating system environments. Despite efforts to address this, mainstream

application operating systems do not support true real-time responsiveness and are not suitable for

supporting the large amount of legacy firmware running on current devices (for example, mobile

phone baseband stacks alone can measure several Mloc). By allowing the simultaneous execution

of an application OS (Linux, Windows, Symbian,...) and a real-time OS (RTOS) on the same

processor, virtualization can assist in this regard (see Figure 1). The RTOS can continue to run the

(legacy) stack that provides the device's real-time functionality if the underlying hypervisor is able

to reliably and rapidly deliver interrupts to it. The application operating system can give the

necessary item Programming interface and undeniable level usefulness appropriate for application

programming. Keep in mind that the same result can be obtained by employing multiple processor

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. IV, April ISSN: 2231-5152

88

International Journal of Advances in Engineering Research

cores, each of which runs its own operating system, provided that the hardware supports securely

partitioning memory. The cost of a core is rising while the number of multicore chips is decreasing

dramatically. Due to strong non-linearities in power management, two lower-performance cores,

each of which can be put to sleep, are also likely to consume less power on average than one

higher-performance core [22,23]. As a result, this usage scenario is probably only going to be

relevant for a few years. However, since the same software architecture can be transferred between

a multicore and a (virtualized) single core virtually unchanged, virtualization facilitates

architectural abstraction. Virtualization will be used for a different, longer-term purpose with the

upcoming manycore chips. With a lot of processors, embedded systems will probably have

problems that are similar to the reasons virtualization is used in business today. By dividing the

chip into several smaller multiprocessor domains, a scalable hypervisor could serve as the

foundation for deploying legacy operating systems with poor scaling on a large number of cores.

A hypervisor can either manage power consumption by removing processors from domains and

shutting down idle cores, or it can dynamically add cores to an application domain, which requires

additional processor power. Keep in mind that the application operating system must be able to

handle varying CPU counts for this to work.) In a hot-failover configuration, the hypervisor can

also be used to set up redundant domains for fault tolerance. Security is probably the most

compelling case for virtualization. The likelihood of a compromised application operating system

skyrockets with the shift toward open systems. As depicted in Figure 2, running such an operating

system in a virtual machine that restricts access to the rest of the system can minimize the damage

that results. Specifically, services that are accessible from a distance could be encapsulated in a

VM, or downloaded code could only be run in a VM environment. If this security use case is true:

• critical functionality can be separated into VMs distinct from the exposed user- or network-

facing ones, and

• the underlying hypervisor is significantly more secure than the guest OS (which, first and

foremost, necessitates a significantly smaller hypervisor).

The hypervisor will simply increase the size of the trusted computing base (TCB) if those

prerequisites are not met. This is not good for security. Lastly, widespread (and standardized)

virtualization support paves the way for a novel distribution strategy for software applications:

sending the application along with its own OS image. This gives the application developer a well-

defined OS environment, which makes it less likely that the deployed software will fail because

of configuration mismatches. Automatic removal of replicated page contents can lessen the impact

of such a scheme, which has significant resource implications, particularly in terms of memory

consumption [6].

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. IV, April ISSN: 2231-5152

89

International Journal of Advances in Engineering Research

LIMITS OF VIRTUALIZATION

The aforementioned use cases demonstrate that embedded systems can benefit significantly from

virtualization. However, there are significant restrictions on the use of system virtual machines

(VMs) in embedded systems; in fact, these restrictions are directly related to the popularity of

virtualization. By definition, a virtual machine operates on its virtual hardware as if it had exclusive

use of physical hardware; virtualization is all about isolation. It is important to keep in mind that

some vendors are not afraid to refer to (highly insecure) OS co-location as virtualization in an

effort to capitalize on a well-known marketing buzzword. However, since this type of pseudo-

virtualization only addresses the simplest heterogeneous-OS use cases, it will not be considered

further.) The model of strongly isolated virtual machines does not meet the needs of embedded

systems, as opposed to the server space. Because of their inherent high degree of integration,

embedded systems require the cooperation of all subsystems in order to contribute to the system's

overall operation. They disrupt the system's functional requirements by being isolated from one

another. Effective sharing is necessary for embedded system cooperation between its various

subsystems. A mobile phone may receive a video file over the cellular network (via the baseband

OS), which is then displayed on the screen (by a media player running on the application OS). This

is required for bulk data transfer. At least one additional copy operation is required to transfer this

data "virtual-machine style" between the application VM and the real-time VM via a virtual

network interface, resulting in a significant waste of processor cycles and battery life. A shared

buffer and low-latency synchronization and messaging primitives are clearly the best options. The

virtual-machine model, on the other hand, does not account for such operations. Scheduling

demonstrates yet another gap between the virtual machine model and the requirements for

embedded systems. The hypervisor schedules virtual machines as black boxes, and the guest

operating system is in charge of scheduling activities within the VM. However, this is not suitable

for embedded systems; As depicted in Figure 3, their integrated nature necessitates a global,

integrated scheduling strategy. Background activities with a low priority will also be present in the

RTOS domain, despite the fact that real-time activities running in an RTOS typically need to have

the highest scheduling priority. These should not be able to override the application OS's user

interface. Similarly, in the RTOS environment, the application operating system may be running

some (soft) real-time activities, such as the media player, that may take precedence over other real-

time activities. It is obvious that virtualization's decentralized, hierarchical scheduling model

cannot address the characteristics of embedded systems. Similar to real-time scheduling, energy

management is a system-wide problem that cannot be solved locally. Under pressure to meet

deadlines, energy management in embedded systems frequently involves weighing energy

consumption against performance (i.e., time). However, energy cannot be exchanged for virtual

time because it is a global physical resource. This is in contrast to the server industry, where energy

efficiency can be achieved through a hierarchical approach rather than energy savings [2-4].

Additionally, virtualization does little to address embedded systems' most pressing issue: the

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. IV, April ISSN: 2231-5152

90

International Journal of Advances in Engineering Research

expanding programming intricacy, which takes steps to sabotage gadget heartiness and wellbeing.

The acknowledged programming approach for addressing intricacy challenges is to utilize

embodied parts [2-5] for shortcoming regulation. Encapsulation is provided by virtualization, but

its granularity is insufficient to make a significant difference. After all, a virtual machine is

designed to run an operating system that supports its software and emulates hardware. Because of

this, virtual machines have a lot of weight, and embedded systems can't run more than a few of

them (keep in mind that memory costs energy and money to make). A component framework that

is lightweight in terms of memory overhead as well as the cost of inter-component communication

and does not increase the system's overall complexity is needed to address the software complexity

problem. Last but not least, control over information flow is becoming an increasingly significant

issue. Although it may initially appear surprising, embedded systems are no longer single-user

devices. For instance, a mobile phone handset has at least three distinct classes of stakeholders, or

"users," because they each have distinct access rights:

1. The owner, or the person who purchased the gadget in some way.

2. The one who grants access to a wireless network is the wireless service provider. Similar to the

DoCoMo/Intel OSTI proposal [7], which argues for a separation of enterprise and private service

when the same physical device is used for both private and business purposes, we might see

multiple concurrent service providers for the same physical device in the future.

3. Outsider specialist organizations who utilize the remote availability to offer types of assistance

free of the remote specialist organization. Providers of multimedia content for information or

entertainment fall under this category. Financial transactions like payments for random goods and

services are becoming more and more common.

In general, these users distrust each other, and each has assets on the device they want to protect.

The owner wants to keep the address books, emails, and documents that the other users do not

have a legitimate interest in private and out of their reach. These would be further divided into

private and enterprise data in the OSTI scenario, resulting in multiple logical owner-type users (or

"roles") In order to comply with legal requirements and ensure correct billing, the service provider

must ensure the network's integrity and that all network access is properly authenticated without

interfering with others' legitimate use. It subsequently needs certainty that the gadget will stick to

conventions. The content providers need assurance that their data will only be used in accordance

with the owner's license (for example, only for a limited time and without being copied to other

devices). Both the owner and the providers require assurance regarding the security of financial

transactions with other third-party service providers, which includes strong access token

protection. We along these lines have an entrance control issue not divergent based on what is seen

as in conventional (time-shared) multi-client frameworks. Several agents have legitimate access

rights to some data but no access rights to other data. A security monitor must be able to enforce

access policies while information must flow between the agents. Importantly, many of the

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. IV, April ISSN: 2231-5152

91

International Journal of Advances in Engineering Research

subsystems will be able to handle sensitive user data. The guest operating system must be trusted

to enforce the information-flow policies if these subsystems are contained within a virtual

machine. This would be a (potentially massive) expansion of the system's trusted computing base,

which is clearly worse for security than simply trusting a single operating system. As previously

stated, it would eliminate many of the potential security advantages of virtualization. The TCB

should be reduced to a minimum for security reasons, and it should not be dependent on large

application OSes (with a high risk of compromise).

CONCLUSIONS

Although virtualization has many features that are appealing to the embedded community, it is not

a good fit for contemporary embedded systems on its own. Fine-grained encapsulation, integrated

scheduling, and information-flow control require more general OS technology. All of the

necessary features can be provided by high-performance microkernels, making it possible to

switch from monolithic software stacks to componentized (fault-resilient) software stacks. The

prospect of formal verification of the implementation of the microkernel opens up an exciting path

to systems with unprecedented reliability. Hypervisors appear to be gaining a microkernel-like

appearance, including the incorporation of microkernel-like primitives to address some

virtualization drawbacks. However, the inherent advantage of microkernels is that they enable a

smaller TCB . Additionally, due to the low scalability of formal verification methods, only a real

microkernel will ever be able to provide the advantages of formal verification. We conclude that

virtualization should be implemented in some form in future embedded systems for good reasons.

System virtual machines' benefits, on the other hand, will only be fully realized if the operating

system technology is changed to one based on high-performance microkernels.

Figure 1. A virtual machine. The hypervisor (or virtual-machine monitor) presents an interface that looks

like hardware to the “guest” operating system.

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. IV, April ISSN: 2231-5152

92

International Journal of Advances in Engineering Research

Figure 2. Most instructions of the virtual machine are directly executed, while some cause an exception,

which invokes the hypervisor which then interprets the instruction.

Figure 3. Impure virtualization techniques replace instructions in the original code by either an explicit

hypervisor call (trapping instruction) or a jump to user-level emulation code.

Figure 4: The primary use case for virtualization in embedded systems is the co-existence of two

completely different OS environments, real-time OS and high-level application OS, on the same

processor.

REFERENCES

1. Gilles, K., Groesbrink, S., Baldin, D. and Kerstan, T., (2012). Proteus hypervisor: Full

virtualization and paravirtualization for multi-core embedded systems. In Embedded Systems:

http://www.ijaer.com/

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2013, Vol. No. 5, Issue No. IV, April ISSN: 2231-5152

93

International Journal of Advances in Engineering Research

Design, Analysis and Verification: 4th IFIP TC 10 International Embedded Systems

Symposium, IESS 2011, Paderborn, Germany, June 17-19, 2012. Proceedings 4 (pp. 293-305).

Springer Berlin Heidelberg.

2. Son, S.H., (2011). An MMU Virtualization for Embedded Systems. In IT Convergence and

Security 2012 (pp. 247-252). Springer Netherlands.

3. Patel, A., Daftedar, M., Shalan, M. and El-Kharashi, M.W., (2011), March. Embedded

hypervisor xvisor: A comparative analysis. In 2012 23rd Euromicro International Conference

on Parallel, Distributed, and Network-Based Processing (pp. 682-691). IEEE.

4. Muench, D., Isfort, O., Mueller, K., Paulitsch, M. and Herkersdorf, A., (2011, December).

Hardware-based I/O virtualization for mixed criticality real-time systems using PCIe SR-IOV.

In 2012 IEEE 16th International Conference on Computational Science and Engineering (pp.

706-713). IEEE.

5. Trujillo, S., Crespo, A. and Alonso, A., (2010, September). Multipartes: Multicore

virtualization for mixed-criticality systems. In 2012 Euromicro Conference on Digital System

Design (pp. 260-265). IEEE.

6. Armbrust, E., Song, J., Bloom, G. and Parmer, G., (2012, December). On spatial isolation for

mixed criticality, embedded systems. In Proc. 2nd Workshop on Mixed Criticality Systems

(WMC), RTSS (pp. 15-20).

7. Paulitsch, M., Duarte, O.M., Karray, H., Mueller, K., Muench, D. and Nowotsch, J., (2011,

August). Mixed-criticality embedded systems--a balance ensuring partitioning and

performance. In 2012 Euromicro Conference on Digital System Design (pp. 453-461). IEEE.

8. Pinto, S., Oliveira, D., Pereira, J., Cardoso, N., Ekpanyapong, M., Cabral, J. and Tavares, A.,

(2012, September). Towards a lightweight embedded virtualization architecture exploiting

arm trustzone. In Proceedings of the 2013 IEEE Emerging Technology and Factory

Automation (ETFA) (pp. 1-4). IEEE.

9. Bardhi, B., Claudi, A., Spalazzi, L., Taccari, G. and Taccari, L., (2012). Virtualization on

embedded boards as enabling technology for the Cloud of Things. In Internet of Things (pp.

103-124). Morgan Kaufmann.

10. Armbrust, E., Song, J., Bloom, G. and Parmer, G., (2011, December). On spatial isolation for

mixed criticality, embedded systems. In Proc. 2nd Workshop on Mixed Criticality Systems

(WMC), RTSS (pp. 15-20).

11. Wildermann, S. and Teich, J., (2012, September). Self-integration for virtualization of

embedded many-core systems. In 2011 IEEE Eighth International Conference on Self-

Adaptive and Self-Organizing Systems Workshops (pp. 170-177). IEEE.

12. García-Valls, M., Cucinotta, T. and Lu, C., (2012). Challenges in real-time virtualization and

predictable cloud computing. Journal of Systems Architecture, 60(9), pp.726-740.

http://www.ijaer.com/

