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ABSTRACT 

System virtualization, which is very popular in the business and personal, computing worlds, is recently 

getting a lot of attention in the embedded world. We will examine the differences in motivation for the use 

of system virtual machines, as well as the resulting differences in the requirements for the technology, 

beginning with a comparison of key characteristics of enterprise systems and embedded systems. We 

observe that these distinctions are very significant, and that virtualization can't meet the extraordinary 

prerequisites of inserted frameworks. Instead, virtualization as a special case necessitates more general 

operating system technologies. We argue that high-performance micro kernels, specifically L4, are a 

suitable technology for the needs of embedded systems of the next generation. 
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INTRODUCTION 

Virtualization has been a hot topic in the enterprise space for quite some time, but has recently 

become an important technology for embedded systems as well. It is therefore important for 

embedded-systems developers to understand the power and limitations of virtualization in this 

space, in order to understand what technology is suitable for their products. 

This white paper presents an introduction to virtualization technology in general, and specifically 

discusses its application to embedded systems. We explain the inherent differences between the 

enterprise-systems style of virtualization and virtualization as it applies to embedded systems. We 

explain the benefits of virtualization, especially with regard to supporting embedded systems 

composed of subsystems with widely varying properties and requirements, and with regard to 

security and IP protection. 
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We then discuss the limitations of plain virtualization approaches, specifically as it applies to 

embedded systems. These relate to the highly-integrated nature of embedded systems, and the 

particular security and reliability requirements. 

We present microkernels as a specific approach to virtualization, and explain why this approach is 

particularly suitable for embedded systems. We show how microkernels, especially Open Kernel’s 

OKL4 technology, overcome the limitations of plain virtualization.  

System virtualization has become a common computing tool, as evidenced by billion-dollar initial 

public offerings (IPOs) and startup company sales for hundreds of millions of dollars. The 

decoupling of virtual and actual registering stages by means of framework virtual machines (VMs) 

upholds different purposes, of which the most famous ones are: 

• Consolidating services that were making use of distinct computers into distinct virtual machines 

that were running on the same computer. To achieve quality-of-service (QoS) isolation between 

servers, this makes use of the strong resource isolation offered by virtual machines; 

• load-balancing across clusters by migrating live virtual machines or creating new virtual 

machines on demand on a host that is rarely used. This makes use of virtualization's platform 

abstraction; 

• power management in clusters by moving virtual machines off of machines that are underutilized 

and allowing them to be shut down (in effect, load-balancing in reverse) 

• firewalling administrations which have a high gamble of being compromised to safeguard the 

remainder of the framework. Isolation of resources is also used in this; 

• running multiple operating systems (OSs) on the same physical machine, such as Windows, 

Linux, and MacOS, typically to run OS-specific applications This use is also made possible by 

resource isolation and is primarily applicable to personal computers (desktops or laptops). 

The fact that all VMs typically run the same operating system (or, in the last scenario discussed 

above, "similar" operating systems in the sense that they offer roughly the same kinds of 

capabilities and similar abstraction levels) is one of the main characteristics of these usage cases. 

Similarly to physical machines, VMs communicate via virtual network interfaces (including 

network file systems) in these scenarios. This is in line with the VM view, which is, by definition, 

similar to the physical machine view. Clearly, most of the above use cases do not exist in today's 

embedded systems; however, some will become relevant as manycore chips become available. We 

need to examine the characteristics of contemporary embedded systems and identify similarities 

as well as distinctions between them and enterprise computing systems in order to comprehend 

why system virtual machines have recently received a lot of interest from developers of embedded 

systems. 
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For quite some time, virtualization has been a hot topic in the business world, but it has recently 

emerged as an essential technology for embedded systems as well. Therefore, it is essential for 

developers of embedded systems to comprehend the advantages and disadvantages of 

virtualization in this field in order to determine which technology is best suited to their products. 

This white paper gives an overview of virtualization technology in general and focuses on how it 

can be used with embedded systems. We go over the fundamental differences between 

virtualization for embedded systems and enterprise-systems virtualization. We discuss the 

advantages of virtualization, particularly with regard to IP and security protection for embedded 

systems made up of subsystems with widely varying requirements and properties. Following that, 

we talk about the drawbacks of standard virtualization strategies, particularly in relation to 

embedded systems. These are related to the particular security and reliability requirements and the 

highly integrated nature of embedded systems. We discuss the advantages of microkernels as a 

particular virtualization strategy for embedded systems and present microkernels as an example of 

this strategy. We demonstrate how microkernels, particularly Open Kernel's OKL4 technology, 

circumvent plain virtualization's limitations. Then, we give a glimpse of this technology's future. 

VIRTUALIZATION 

Providing a software environment in which programs, including operating systems, can run as if 

they were on bare hardware is known as virtualization (Figure 1). Such a product climate is known 

as a virtual machine (VM). A VM of this kind is a reliable, isolated copy of the real machine 

[PG74]. 

The virtual-machine monitor (VMM) or hypervisor is the software layer that provides the VM 

environment. The VMM possesses three essential characteristics [PG74] in order to maintain the 

illusion that it contains: 

1. Software is provided with an environment by the VMM that is nearly identical to the 

original machine; 

2. At best, the speed of programs running in this environment slows down slightly; 

3. System resources are completely under the control of the VMM. 

Virtualization is highly practical because of these three important characteristics. The first 

(similitude) guarantees that product that sudden spikes in demand for the genuine machine will 

run on the virtual machine as well as the other way around. The second, efficiency, ensures that 

virtualization can be implemented in terms of performance. The third measure, resource control, 

ensures that software cannot exit the virtual machine. Language environments, such as the Java 

virtual machine, are also frequently referred to as virtual machines. A process virtual machine 

(VM) is referred to as this, while a system virtual machine (VM) is referred to as this and can run 

complete operating systems [SN05]. System VMs are the only topic of this paper. 
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HOW IS IT DONE?  

The majority of instructions must be executed directly by the hardware in order to meet the 

efficiency requirement: A single virtual machine instruction is substituted for multiple host 

hardware instructions by any interpretation or emulation. This necessitates that the virtual 

hardware and the physical hardware on which the VMM is hosted must largely be identical. It is 

possible for the virtual and physical machines to have minor differences. For instance, the virtual 

machine might have a few additional guidelines not upheld by the actual equipment. Compared to 

the virtual hardware, the physical hardware may have different devices or a different memory 

management unit. It's possible that the virtual machine will run older versions of the same 

fundamental architecture. Alternately, the virtual machine might be a new architecture version that 

hasn't been implemented yet. Virtualization can be about as effective as using the same hardware 

as long as there aren't too many differences and the different instructions aren't used a lot. Some 

instructions cannot be carried out immediately. All instructions that deal with resources must 

access virtual resources rather than physical ones because of the resource-control characteristic. 

As a result, the VMM must interpret these instructions in order to prevent virtualization from 

failing. The virtual machine is specifically required to interpret two types of instructions: control-

delicate guidelines which adjust advantaged machine state, and in this manner impede the 

hypervisor's command over assets; instructions that are behavior-sensitive and can access and read 

privileged machine state. Although they are unable to alter resource allocations, they reveal the 

state of actual resources—specifically how it differs from virtual resources—breaking the 

virtualization illusion. Together, control-touchy and conduct delicate guidelines are called 

virtualization-delicate, or just delicate directions. There are two fundamental ways to guarantee 

that the virtual machine's code does not carry out any sensitive instructions: virtualization alone: 

ensure that the hypervisor is invoked rather than sensitive instructions executed within the virtual 

machine; unclean virtualization: Virtualization code should take the place of sensitive instructions 

in the virtual machine. 

PURE VIRTUALIZATION  

The traditional method is pure virtualization. It requires privileged access to all sensitive 

instructions. Favored directions execute effectively on the off chance that the processor is in a 

special state (normally called special mode, bit mode or boss mode) however create an exemption 

when executed in unprivileged mode (likewise called client mode), as displayed in Figure 2. The 

hypervisor's exception handler is the address at which an exception enters privileged mode. 

The only requirement for pure virtualization is to execute all of the VM's code in the processor's 

non-privileged execution mode. The hypervisor will get a hold of any sensitive instructions in the 

VM's code. In order to keep the state of the virtual machine intact, the hypervisor interprets the 
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instruction and "virtualizes" it. On nearly all current architectures, pure virtualization was 

previously impossible due to the presence of sensitive, non-privileged instructions that would 

access physical machine state rather than virtual machine state. Virtualization extensions, which 

enable the processor to be configured in a way that forces all sensitive instructions to cause 

exceptions, have recently been added by all major processor manufacturers. In any case, there are 

different motivations behind why options in contrast to unadulterated virtualization are generally 

utilized. One is the high cost of exceptions. A processing delay of one cycle per pipeline stage 

occurs when an exception drains the pipeline on processors with pipelines. When switching back 

to user mode, there is typically a similar delay. Additionally, exceptions and exception returns are 

branches that are typically unpredictable by a processor's branch-prediction unit, which increases 

latency. In high-performance processors with extensive pipelines, these effects typically add up to 

more than 10 to 20 cycles. The exception costs of some processors, like the x86 family, are 

significantly higher than this (many hundreds of cycles). 

IMPURE VIRTUALIZATION  

As depicted in Figure.3, impure virtualization necessitates the removal of non-privileged sensitive 

instructions from the virtual machine's code. A method known as binary code rewriting can make 

this clear: At the time of loading, the executable code is scanned, and any instructions that aren't 

working are changed with ones that make an exception or provide virtualization in another way, 

like keeping virtual hardware resources in user mode. Alternately, troublesome instructions could 

be avoided entirely from the executable code. Pre-virtualization, also known as afterburning, is a 

mostly automatic method that can be used to accomplish this at compile time [LUC+05]. 

Alternately, the source code can be manually altered to replace direct access to privileged state 

with explicit hypervisor invocations (hypercalls) instead. Para-virtualization is the term used to 

describe this strategy. The procedure remains unchanged from pure virtualization: The hypervisor 

is invoked whenever a virtualization event occurs, and the guest code executes in the processor's 

non-privileged execution mode. In addition to being able to deal with hardware that is not suitable 

for pure virtualization, para-virtualization and pre-virtualization offer another advantage: By 

replacing multiple sensitive instruction sequences with a single hypercall, they can reduce the 

number of costly unprivileged mode switches. Impure virtualization is therefore appealing even 

on fully virtualisable hardware because it has the potential to reduce virtualization overhead. 

EMBEDDED SYSTEMS PROPERTIES 

Historically, embedded systems were relatively straightforward, one-purpose devices. Hardware 

limitations (memory, processing power, battery charge) dominated. Additionally, their 

functionality was largely determined by hardware, with device drivers, a scheduler, and a little 

control logic serving as software. As a result, they had software complexity ranging from low to 

moderate. They were constrained by real-time constraints, which place unusual demands on 
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operating systems for general-purpose computing. Additionally, traditional embedded systems are 

closed: Except for sporadic firmware upgrades, the entire software stack is loaded prior to sale and 

provided by the device manufacturer. However, general-purpose systems are increasingly being 

adopted by modern embedded systems. Their software's complexity and number of features are 

also increasing. Smartphone software stacks currently range from 5 to 7 Mloc and growing. 

Software occupies literally gigabytes in high-end automobiles, and it is said that loading the 

software takes longer than building the vehicle itself. Applications originally designed for the PC 

world are increasingly being run on embedded systems, such as the iPhone's Safari web browser, 

and new applications, such as games, are increasingly being written by programmers who lack 

experience with embedded systems. High-level application-oriented operating systems with 

common APIs (Linux, Windows, and Mac OS) are in high demand as a result. In addition, there 

is a significant movement toward openness [4, 17]. The owners of the devices want to install and 

use their own applications on the systems. This requires open APIs (and presents all the security 

challenges known from the PC world, including infections and worms). However, some of the 

previous distinctions from general-purpose systems remain. Implanted gadgets are still constant 

frameworks (or possibly some portion of the product is ongoing). Additionally, they frequently 

remain resource constrained: As a result of the slow rate at which battery capacity expands over 

time, mobile devices have limited energy budgets. Additionally, memory is frequently still a cost 

factor (in addition to being a consumer of energy) given that many embedded systems are sold for 

just a few dollars. At the same time, embedded systems, which are already present everywhere, 

are becoming an increasingly integral part of daily life to the point where it is becoming difficult 

to imagine living without them. They are increasingly being used in situations where a life or 

mission is at stake. As a result, there are increasing demands placed on security, dependability, 

and safety. 

VIRTUALIZATION USE CASES 

The ability to address some of the new challenges posed by them is what makes virtualization 

useful in embedded systems. One is addressing the conflicting requirements of highlevel APIs for 

application programming, real-time performance, and legacy support by providing support for 

heterogeneous operating system environments. Despite efforts to address this, mainstream 

application operating systems do not support true real-time responsiveness and are not suitable for 

supporting the large amount of legacy firmware running on current devices (for example, mobile 

phone baseband stacks alone can measure several Mloc). By allowing the simultaneous execution 

of an application OS (Linux, Windows, Symbian,...) and a real-time OS (RTOS) on the same 

processor, virtualization can assist in this regard (see Figure 1). The RTOS can continue to run the 

(legacy) stack that provides the device's real-time functionality if the underlying hypervisor is able 

to reliably and rapidly deliver interrupts to it. The application operating system can give the 

necessary item Programming interface and undeniable level usefulness appropriate for application 

programming. Keep in mind that the same result can be obtained by employing multiple processor 
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cores, each of which runs its own operating system, provided that the hardware supports securely 

partitioning memory. The cost of a core is rising while the number of multicore chips is decreasing 

dramatically. Due to strong non-linearities in power management, two lower-performance cores, 

each of which can be put to sleep, are also likely to consume less power on average than one 

higher-performance core [22,23]. As a result, this usage scenario is probably only going to be 

relevant for a few years. However, since the same software architecture can be transferred between 

a multicore and a (virtualized) single core virtually unchanged, virtualization facilitates 

architectural abstraction. Virtualization will be used for a different, longer-term purpose with the 

upcoming manycore chips. With a lot of processors, embedded systems will probably have 

problems that are similar to the reasons virtualization is used in business today. By dividing the 

chip into several smaller multiprocessor domains, a scalable hypervisor could serve as the 

foundation for deploying legacy operating systems with poor scaling on a large number of cores. 

A hypervisor can either manage power consumption by removing processors from domains and 

shutting down idle cores, or it can dynamically add cores to an application domain, which requires 

additional processor power. Keep in mind that the application operating system must be able to 

handle varying CPU counts for this to work.) In a hot-failover configuration, the hypervisor can 

also be used to set up redundant domains for fault tolerance. Security is probably the most 

compelling case for virtualization. The likelihood of a compromised application operating system 

skyrockets with the shift toward open systems. As depicted in Figure 2, running such an operating 

system in a virtual machine that restricts access to the rest of the system can minimize the damage 

that results. Specifically, services that are accessible from a distance could be encapsulated in a 

VM, or downloaded code could only be run in a VM environment. If this security use case is true: 

• critical functionality can be separated into VMs distinct from the exposed user- or network-

facing ones, and 

• the underlying hypervisor is significantly more secure than the guest OS (which, first and 

foremost, necessitates a significantly smaller hypervisor). 

The hypervisor will simply increase the size of the trusted computing base (TCB) if those 

prerequisites are not met. This is not good for security. Lastly, widespread (and standardized) 

virtualization support paves the way for a novel distribution strategy for software applications: 

sending the application along with its own OS image. This gives the application developer a well-

defined OS environment, which makes it less likely that the deployed software will fail because 

of configuration mismatches. Automatic removal of replicated page contents can lessen the impact 

of such a scheme, which has significant resource implications, particularly in terms of memory 

consumption [6]. 
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LIMITS OF VIRTUALIZATION 

The aforementioned use cases demonstrate that embedded systems can benefit significantly from 

virtualization. However, there are significant restrictions on the use of system virtual machines 

(VMs) in embedded systems; in fact, these restrictions are directly related to the popularity of 

virtualization. By definition, a virtual machine operates on its virtual hardware as if it had exclusive 

use of physical hardware; virtualization is all about isolation. It is important to keep in mind that 

some vendors are not afraid to refer to (highly insecure) OS co-location as virtualization in an 

effort to capitalize on a well-known marketing buzzword. However, since this type of pseudo-

virtualization only addresses the simplest heterogeneous-OS use cases, it will not be considered 

further.) The model of strongly isolated virtual machines does not meet the needs of embedded 

systems, as opposed to the server space. Because of their inherent high degree of integration, 

embedded systems require the cooperation of all subsystems in order to contribute to the system's 

overall operation. They disrupt the system's functional requirements by being isolated from one 

another. Effective sharing is necessary for embedded system cooperation between its various 

subsystems. A mobile phone may receive a video file over the cellular network (via the baseband 

OS), which is then displayed on the screen (by a media player running on the application OS). This 

is required for bulk data transfer. At least one additional copy operation is required to transfer this 

data "virtual-machine style" between the application VM and the real-time VM via a virtual 

network interface, resulting in a significant waste of processor cycles and battery life. A shared 

buffer and low-latency synchronization and messaging primitives are clearly the best options. The 

virtual-machine model, on the other hand, does not account for such operations. Scheduling 

demonstrates yet another gap between the virtual machine model and the requirements for 

embedded systems. The hypervisor schedules virtual machines as black boxes, and the guest 

operating system is in charge of scheduling activities within the VM. However, this is not suitable 

for embedded systems; As depicted in Figure 3, their integrated nature necessitates a global, 

integrated scheduling strategy. Background activities with a low priority will also be present in the 

RTOS domain, despite the fact that real-time activities running in an RTOS typically need to have 

the highest scheduling priority. These should not be able to override the application OS's user 

interface. Similarly, in the RTOS environment, the application operating system may be running 

some (soft) real-time activities, such as the media player, that may take precedence over other real-

time activities. It is obvious that virtualization's decentralized, hierarchical scheduling model 

cannot address the characteristics of embedded systems. Similar to real-time scheduling, energy 

management is a system-wide problem that cannot be solved locally. Under pressure to meet 

deadlines, energy management in embedded systems frequently involves weighing energy 

consumption against performance (i.e., time). However, energy cannot be exchanged for virtual 

time because it is a global physical resource. This is in contrast to the server industry, where energy 

efficiency can be achieved through a hierarchical approach rather than energy savings [2-4]. 

Additionally, virtualization does little to address embedded systems' most pressing issue: the 
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expanding programming intricacy, which takes steps to sabotage gadget heartiness and wellbeing. 

The acknowledged programming approach for addressing intricacy challenges is to utilize 

embodied parts [2-5] for shortcoming regulation. Encapsulation is provided by virtualization, but 

its granularity is insufficient to make a significant difference. After all, a virtual machine is 

designed to run an operating system that supports its software and emulates hardware. Because of 

this, virtual machines have a lot of weight, and embedded systems can't run more than a few of 

them (keep in mind that memory costs energy and money to make). A component framework that 

is lightweight in terms of memory overhead as well as the cost of inter-component communication 

and does not increase the system's overall complexity is needed to address the software complexity 

problem. Last but not least, control over information flow is becoming an increasingly significant 

issue. Although it may initially appear surprising, embedded systems are no longer single-user 

devices. For instance, a mobile phone handset has at least three distinct classes of stakeholders, or 

"users," because they each have distinct access rights: 

1. The owner, or the person who purchased the gadget in some way. 

2. The one who grants access to a wireless network is the wireless service provider. Similar to the 

DoCoMo/Intel OSTI proposal [7], which argues for a separation of enterprise and private service 

when the same physical device is used for both private and business purposes, we might see 

multiple concurrent service providers for the same physical device in the future. 

3. Outsider specialist organizations who utilize the remote availability to offer types of assistance 

free of the remote specialist organization. Providers of multimedia content for information or 

entertainment fall under this category. Financial transactions like payments for random goods and 

services are becoming more and more common. 

In general, these users distrust each other, and each has assets on the device they want to protect. 

The owner wants to keep the address books, emails, and documents that the other users do not 

have a legitimate interest in private and out of their reach. These would be further divided into 

private and enterprise data in the OSTI scenario, resulting in multiple logical owner-type users (or 

"roles") In order to comply with legal requirements and ensure correct billing, the service provider 

must ensure the network's integrity and that all network access is properly authenticated without 

interfering with others' legitimate use. It subsequently needs certainty that the gadget will stick to 

conventions. The content providers need assurance that their data will only be used in accordance 

with the owner's license (for example, only for a limited time and without being copied to other 

devices). Both the owner and the providers require assurance regarding the security of financial 

transactions with other third-party service providers, which includes strong access token 

protection. We along these lines have an entrance control issue not divergent based on what is seen 

as in conventional (time-shared) multi-client frameworks. Several agents have legitimate access 

rights to some data but no access rights to other data. A security monitor must be able to enforce 

access policies while information must flow between the agents. Importantly, many of the 
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subsystems will be able to handle sensitive user data. The guest operating system must be trusted 

to enforce the information-flow policies if these subsystems are contained within a virtual 

machine. This would be a (potentially massive) expansion of the system's trusted computing base, 

which is clearly worse for security than simply trusting a single operating system. As previously 

stated, it would eliminate many of the potential security advantages of virtualization. The TCB 

should be reduced to a minimum for security reasons, and it should not be dependent on large 

application OSes (with a high risk of compromise). 

CONCLUSIONS 

Although virtualization has many features that are appealing to the embedded community, it is not 

a good fit for contemporary embedded systems on its own. Fine-grained encapsulation, integrated 

scheduling, and information-flow control require more general OS technology. All of the 

necessary features can be provided by high-performance microkernels, making it possible to 

switch from monolithic software stacks to componentized (fault-resilient) software stacks. The 

prospect of formal verification of the implementation of the microkernel opens up an exciting path 

to systems with unprecedented reliability. Hypervisors appear to be gaining a microkernel-like 

appearance, including the incorporation of microkernel-like primitives to address some 

virtualization drawbacks. However, the inherent advantage of microkernels is that they enable a 

smaller TCB . Additionally, due to the low scalability of formal verification methods, only a real 

microkernel will ever be able to provide the advantages of formal verification. We conclude that 

virtualization should be implemented in some form in future embedded systems for good reasons. 

System virtual machines' benefits, on the other hand, will only be fully realized if the operating 

system technology is changed to one based on high-performance microkernels. 

 

Figure 1. A virtual machine. The hypervisor (or virtual-machine monitor) presents an interface that looks 

like hardware to the “guest” operating system. 
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Figure 2. Most instructions of the virtual machine are directly executed, while some cause an exception, 

which invokes the hypervisor which then interprets the instruction. 

 

Figure 3. Impure virtualization techniques replace instructions in the original code by either an explicit 

hypervisor call (trapping instruction) or a jump to user-level emulation code. 

 

Figure 4: The primary use case for virtualization in embedded systems is the co-existence of two 

completely different OS environments, real-time OS and high-level application OS, on the same 

processor. 
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